http://mbio.asm.org/content/6/4/e01013-15.full.pdf

Molecular Characterization of Subtype H11N9 Avian Influenza Virus Isolated from Shorebirds in Brazil

Migratory aquatic birds play an important role in the maintenance and spread of avian influenza viruses (AIV). Many species of aquatic migratory birds tend to use similar migration routes, also known as flyways, which serve as important circuits for the dissemination of AIV. In recent years there has been extensive surveillance of the virus in aquatic birds in the Northern Hemisphere; however in contrast only a few studies have been attempted to detect AIV in wild birds in South America. There are major flyways connecting South America to Central and North America, whereas avian migration routes between South America and the remaining continents are uncommon. As a result, it has been hypothesized that South American AIV strains would be most closely related to the strains from North America than to those from other regions in the world. We characterized the full genome of three AIV subtype H11N9 isolates obtained from ruddy turnstones (Arenaria interpres) on the Amazon coast of Brazil. For all gene segments, all three strains consistently clustered together within evolutionary lineages of AIV that had been previously described from aquatic birds in North America. In particular, the H11N9 isolates were remarkably closely related to AIV strains from shorebirds sampled at the Delaware Bay region, on the Northeastern coast of the USA, more than 5000 km away from where the isolates were retrieved. Additionally, there was also evidence of genetic similarity to AIV strains from ducks and teals from interior USA and Canada. These findings corroborate that migratory flyways of aquatic birds play an important role in determining the genetic structure of AIV in the Western hemisphere, with a strong epidemiological connectivity between North and South America.


The Reemergent 1977 H1N1 Strain and the Gain-of-Function Debate

ABSTRACT
The 1977-1978 influenza epidemic was probably not a natural event, as the genetic sequence of the virus was nearly identical to the sequences of decades-old strains. While there are several hypotheses that could explain its origin, the possibility that the 1977 epidemic resulted from a laboratory accident has recently gained popularity in discussions about the biosafety risks of gain-of-function (GOF) influenza virus research, as an argument for why this research should not be performed. There is now a moratorium in the United States on funding GOF research while the benefits and risks, including the potential for accident, are analyzed. Given the importance of this historical epidemic to ongoing policy debates, we revisit the evidence that the 1977 epidemic was not natural and examine three potential origins: a laboratory accident, a live-vaccine trial escape, or deliberate release as a biological weapon. Based on available evidence, the 1977 strain was indeed too closely matched to decades-old strains to likely be a natural occurrence. While the origin of the outbreak cannot be conclusively determined without additional evidence, there are very plausible alternatives to the laboratory accident hypothesis, diminishing the relevance of the 1977 experience to the modern GOF debate.




Hurtado 2015: Molecular Characterization of Subtype H11N9 Avian Influenza Virus Isolated from Shorebirds in Brazil
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687026/


2015 Rozo: The Reemergent 1977 H1N1 Strain and the Gain-of-Function Debate
https://mbio.asm.org/content/mbio/6/4/e01013-15.full.pdf