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Virus genomes reveal factors that spread 
and sustained the Ebola epidemic
A list of authors and their affiliations appears at the end of the paper

At least 28,646 cases and 11,323 deaths1 have been attributed to the 
Makona variant of Ebola virus (EBOV)2 in the two and a half years it 
circulated in West Africa. The epidemic is thought to have begun in 
December 2013 in Guinea, but was not detected and reported until 
March 2014 (ref. 3). Initial efforts to control the outbreak in Guinea 
were considered to be succeeding4, but in early 2014 the virus crossed 
international borders into the neighbouring countries Liberia (where 
the first cases were diagnosed in late March) and Sierra Leone (first 
documented case in late February5,6, first diagnosed cases in May7). 
EBOV genomes sequenced from three patients in Guinea early in the 
epidemic3 demonstrated that the progenitor of the Makona variant 
originated in Middle Africa and arrived in West Africa within the last 
15 years7,8. Rapid sequencing from the first reported cases in Sierra 
Leone confirmed that EBOV had crossed the border from Guinea 
and that these cases were not the result of an independent zoonotic 
introduction7. Subsequent studies have analysed the genetic makeup 
of the Makona variant, focusing on Guinea9,10,13, Sierra Leone14,15 or 
Liberia16,17, and have identified local viral lineages and transmission 
patterns within each country.

Although virus sequencing data have covered considerable fractions 
of the epidemic in each affected country, individual studies focused on 
either limited geographical areas or time periods, so that the regional 
level patterns and drivers of the epidemic across its entire duration 
have remained uncertain. Using 1,610 genome sequences collected 
throughout the epidemic, representing over 5% of recorded Ebola virus 
disease (EVD) cases (Extended Data Fig. 1), we reconstruct a detailed 
phylogenetic history of the movement of EBOV within and between 
the three most affected countries. Using a recently developed phylo-
geographic approach that integrates covariates of spatial spread18, we 
test which features of each region (administrative, economic, climatic, 
infrastructural or demographic factors) were important in shaping the 
spatial dynamics of EVD. We also examine the effectiveness of inter-
national border closures on controlling virus dissemination. Finally, 
we investigate why regions that immediately border the most affected 
countries did not develop protracted outbreaks similar to those that 
ravaged Sierra Leone, Guinea and Liberia.

Origin, ignition and trajectory of the epidemic
Molecular clock dating indicates that the most recent common ancestor 
of the epidemic existed between December 2013 and February 2014  

The 2013–2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. 
Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 
Ebola virus genomes, which represent over 5% of the known cases. We test the association of geography, climate and 
demography with viral movement among administrative regions, inferring a classic ‘gravity’ model, with intense dispersal 
between larger and closer populations. Despite attenuation of international dispersal after border closures, cross-border 
transmission had already sown the seeds for an international epidemic, rendering these measures ineffective at curbing 
the epidemic. We address why the epidemic did not spread into neighbouring countries, showing that these countries 
were susceptible to substantial outbreaks but at lower risk of introductions. Finally, we reveal that this large epidemic was 
a heterogeneous and spatially dissociated collection of transmission clusters of varying size, duration and connectivity. 
These insights will help to inform interventions in future epidemics.

(mean, 22 Jan 2014; 95% credible interval (CI), 16 Dec 2013–20  
Feb 2014) and phylogeographic estimation assigns this ancestor to 
the Guéckédou prefecture, Nzérékoré region, Guinea, with high 
credibility (Fig. 1). In addition, we find that initial EBOV lineages 
that were derived from this common ancestor circulated among the 
Guéckédou prefecture and its neighbouring prefectures of Macenta and 
Kissidougou until late February 2014 (Fig. 1). These results support the 
epidemiological evidence that the West African epidemic began in late 
2013 in Guéckédou prefecture3.

The first EBOV introduction from Guinea into another country that 
resulted in sustained transmission is estimated to have occurred in 
early April 2014 (Fig. 1), when the virus spread to the Kailahun dis-
trict of Sierra Leone5,6. This lineage was first detected in Kailahun at 
the end of May 2014, from where it spread across the region (Figs 1, 2 
and Extended Data Fig. 2). From Kailahun, EBOV spread very rapidly 
in May 2014 into several counties of Liberia (Lofa, Montserrado and 
Margibi)17 and Guinea (Conakry, back into Guéckédou)9,13. The virus 
continued to spread westwards through Sierra Leone, and by July 2014 
EBOV was present in the capital city, Freetown.

By mid-September 2014, Liberia was reporting more than 500 
new EVD cases per week, mostly driven by a large outbreak in 
Montserrado county, which encompasses the capital city, Monrovia. 
Sierra Leone reported more than 700 new cases per week by mid- 
November, with large outbreaks in Port Loko, Western Urban 
(Freetown) and Western Rural districts (Freetown suburbs). 
December 2014 brought the first signs that efforts to control the  
epidemic in Sierra Leone were effective, as EVD incidence began to 
drop. By March 2015, the epidemic was largely under control in Liberia 
and eastern Guinea, although sustained transmission continued  
in the border area of western Guinea and western Sierra Leone. By the 
following month, prevalence had declined such that only a handful 
of lineages persisted10,14 (Fig. 2).

The last EBOV genome obtained from a conventionally acquired 
infection was collected and sequenced in October 2015 in Forécariah 
prefecture (Guinea)10. After this, only sporadic cases of EVD were 
detected: in Montserrado (Liberia) in November 2015, Tonkolili 
(Sierra Leone) in January and February 2016, and Nzérékoré 
(Guinea) in March 2016. All these sporadic cases probably resulted 
from transmission from EVD survivors with established, persistent 
infections11,12,14.
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Factors associated with EBOV dispersal
To determine the factors that influenced the spread of EBOV among 
administrative regions at the district (Sierra Leone), prefecture 
(Guinea) and county (Liberia) levels, we used a phylogeographic gen-
eralized linear model (GLM)18. Of the 25 factors assessed (see Extended 
Data Table 1 for a full list and description), 5 were included in the 
model with categorical support (Table 1). In summary, EBOV tends to 
disperse between geographically close regions (great circle distance, 
Bayes factor (BF) support for inclusion: BF > 50). Half of all virus dis-
persals occurred between locations less than 72 km apart and only 5% 
involved movement over 232 km (Fig. 3a). Both origin and destina-
tion population sizes are very strongly (BF > 50) positively correlated 
with viral dissemination, with a stronger effect for origin population 
size. The positive effect of population sizes combined with the inverse 
effect of the geographic distance implies that the spread of the epidemic  
followed a classic gravity-model dynamic. Gravity models, widely used 
in economic and geographic studies and a natural choice for mod-
elling infectious disease transmission19–21, describe the movement of  
people between locations as a function of their population sizes and 
the distance that separates them. Here we use viral genomes to provide 
empirical evidence that such a process drove viral dissemination during 
the EVD epidemic.

In addition to geographical distance, we found a significant propen-
sity for virus dispersal to occur within each country, relative to inter-
national dispersal (nat./int. effect, BF > 50), suggesting that country 
borders acted to curb the geographic spread of EBOV. When interna-
tional dispersals do take place, they are more intense between admin-
istrative regions that are adjacent at an international border (IntBoSh, 
BF > 50).

We tested whether sharing of any of 17 vernacular languages explains 
virus spread, as common languages might reflect cultural links, includ-
ing between non-contiguous or international regions, but we found 
no evidence that such linguistic links were correlated with EBOV 
spread. A variety of other possible predictors of EBOV transmission, 
such as aspects of urbanization (economic output, population density,  

travelling times to large settlements) as well as climatic effects, were not 
significantly associated with virus dispersal. However, these factors may 
have contributed to the size and longevity of transmission chains after 
introduction to a region (see below).

Finally, to investigate the potential of ‘real-time’ viral genome 
sequencing, we considered the degree to which the findings could 
have been obtained at the height of the epidemic, had sequences been 
available shortly after the samples were taken (see Methods for details). 
For the factors associated with EBOV dispersal, the results were highly 
comparable to those for the full dataset whereby the same five factors 
were strongly supported and these had similar effect sizes (Extended 
Data Fig. 3).

Factors associated with local EBOV proliferation
The analysis above identified predominantly geographical and adminis-
trative factors that predict the degree of importation risk, that is, the like-
lihood that a viral lineage initiates at least one infection in a new region. 
However, the epidemiological consequences of each introduction— 
the size and duration of resulting transmission chains—may be 
affected by different factors. Therefore, we investigated which demo-
graphic, economic and climatic factors might predict cumulative case 
counts1 for each region (Bayesian GLM; see Methods) and found that  
these were associated with factors related to urbanization (Table 2): 
primarily population sizes (PopSize, BF = 29.6) and a significant 
inverse association with travel times to the nearest settlement with more  
than 50,000 inhabitants (TT50K, BF = 32.4). These results confirm  
the common perception that, in contrast to previous EVD outbreaks, 
widespread transmission within urban regions in West Africa was a 
major contributing factor to the scale of the epidemic of the Makona 
variant.

As the epidemic in West Africa progressed, there were fears that 
increased rainfall and humidity might prolong the environmental per-
sistence of EBOV particles, increasing the likelihood of transmission22. 
Although we found no evidence of an association between EBOV dis-
persal and any aspects of local climate, we find that regions with less 
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Figure 1 | Summary of early 
epidemic events. a, Temporal 
phylogeny of earliest sampled 
EBOV lineages in Guéckédou 
Prefecture, Guinea. 95% posterior 
densities of most recent common 
ancestor estimates for all lineages 
(grey) and lineages into Kailahun 
District, Sierra Leone (SLE; blue) 
and to Conakry Prefecture, Guinea 
(GIN; green) are shown at the 
bottom. Posterior probabilities 
>0.5 are shown for lineages 
with >5 descendent sequences. 
LBR, Liberia. b, Dispersal events 
marked by coloured lineages and 
labelled by name on the phylogeny 
are projected on a map with 
directionality indicated by colour 
intensity (from light to dark). 
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Prefecture (labelled as GN-1 
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seasonal variation in temperature, and with more rainfall, tended to 
have larger EVD outbreaks (TempSS, BF > 50 and Precip, BF = 4.4, 
respectively).

The impact of international travel restrictions
Porous borders between Liberia, Sierra Leone and Guinea may have 
allowed the unimpeded EBOV spread during the 2013–2016 epi-
demic23–25. Our results indicate that international borders were associ-
ated with a decreased rate of transmission events compared to national 
borders (Extended Data Fig. 4), but that frequent international 
cross-border transmission events still occurred. These events were 

concentrated in the Guéckédou prefecture (Guinea), Kailahun district 
(Sierra Leone) and Lofa county (Liberia) during the early stages of 
the epidemic (Extended Data Fig. 5a), and between the Forécariah 
prefecture (Guinea) and Kambia district (Sierra Leone) at the later  
stage (Extended Data Fig. 5b). These later EBOV movements hin-
dered efforts to interrupt the final chains of transmission in late 2015, 
with EBOV from these chains moving back and forth across this  
border10,14,26. Sierra Leone announced border closures on 11 June 
2014, followed by Liberia on 27 July 2014, and Guinea on 9 August 
2014, but little information is available about what these border  
closures actually entailed. Although we show that the relative contribution  
of international spread to overall viral migration was lower after coun-
try borders were closed (mean nat./int. coefficient increasing from 
1.15 to 2.83 between August and September 2014; 80.0% posterior  
support; (Fig. 2b)), it is difficult to ascertain whether the border 
closures themselves were responsible for the apparent reduction in 
cross-border transmissions, as opposed to concomitant control efforts 
or public information campaigns. However, even if border closures 
reduced international traffic, particularly over longer distances and 
between larger population centres, by the time that Sierra Leone and 
Liberia had closed their borders, the epidemic had become firmly 
established in both countries.

Why did the epidemic not spread further?
A few EBOV exportations were documented from Guinea by road 
transport into Mali and Senegal27,28 and by air from Liberia to Nigeria 
and the USA29,30. However, apart from these limited exceptions, the 
West African Ebola virus epidemic did not spread into the neigh-
bouring regions of Côte d’Ivoire, Guinea-Bissau, Mali and Senegal. 
By extending our GLM (the supported predictors and their estimated 
coefficients) to include these regions we were able to address whether 
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Figure 2 | Transmission chains 
arising from independent 
international movements. 
a, EBOV lineages by country 
(Guinea, green; Sierra Leone, blue; 
Liberia, red), tracked until the 
sampling date of their last known 
descendants. Circles at the roots of 
each subtree denote the country of 
origin for the introduced lineage. 
b, Estimates of the change point 
probability (left y axis) and log 
coefficient (mean and credible 
interval; right y axis) for the nat./
int. factor. Vertical lines represent 
dates that border closures were 
announced by the respective 
countries.

Table 1 | Summary of phylogenetic generalized linear model results
Predictor* Description Coefficient† 95% CI‡ Inclusion§ BF||

Nat./int. National dispersal 
relative to international

3.07 2.36, 3.77 1.0 >50

Distances Great circle distances 
between the locations’ 
population centroids¶

−0.77 −0.91, −0.63 1.0 >50

OrPop Population size at the 
location of origin

1.36 0.86, 1.84 1.0 >50

DestPop Population size at the 
destination location

0.74 0.43, 1.06 1.0 >50

IntBoSh Two locations share an 
international border

3.39 2.42, 4.33 1.0 >50

OrTempSS Index of temperature 
seasonality at origin

−0.47 −0.88, −0.11 0.1 3.79

*Predictors included in the model with Bayes factor >3. 
†Mean coefficient. 
‡95% highest posterior density credible interval (CI). 
§Probability that the predictor was included in the model. 
||BF, Bayes factor. 
¶Population centroids indicate the centre of a location weighted by population.
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these regions were spared EVD cases through good fortune, or because 
they were associated with an inherently lower risk of EBOV spread 
and transmission. We estimated the degree to which these, apparently 
EVD-free, regions had the potential to be exposed to viral introductions 
from affected regions (see Methods).

Overall, the contiguous regions in unaffected neighbouring coun-
tries were all predicted to have low numbers of EBOV introductions 
(Fig. 4a and Extended Data Fig. 6a) based on the phylogeographic 
history of the sampled cases. They were not, however, predicted to 
have particularly low levels of transmission if an outbreak had started 
(Fig. 4b and Extended Data Fig. 6b). Therefore, it is likely that some 
of these regions were at risk of becoming part of the EVD epidemic, 
but that their geographical distance from areas of active transmission 
and the attenuating effect of international borders prevented this from 

occurring. The Kati cercle in Mali and Tonkpi region in Côte d’Ivoire  
are to some extent exceptions to this general result, as these were more 
susceptible to EBOV introductions under the gravity model because of 
their large populations (1 million and 950,000, respectively) (Fig. 4a), 
and are predicted to have experienced many cases had EVD become 
established (Fig. 4b).

Metapopulation structure and dynamics of the epidemic
After the initial establishment of transmission in Sierra Leone and 
Liberia, Guinea experienced repeated reintroductions of viral lineages 
from disparate transmission chains from both countries (Fig. 2). Our 
analysis reveals that there were at least 21 (95% CI, 16–25) reintroduc-
tions into Guinea from April 2014 to February 2015. An early epidemic 
lineage was established around the Guinean capital, Conakry, and per-
sisted for the duration of the epidemic (GN-1 in Figs 1, 2). However,  
the continual reintroduction of EBOV into Guinea without a clear peak 
in transmission suggests that the virus may have been failing to main-
tain transmission elsewhere. There were also numerous introductions 
into Sierra Leone over a similar time period (median, 9; 95% CI, 6–12), 
but the resulting transmission chains constituted a very small propor-
tion of the country’s EVD cases, with the bulk of transmission resulting 
from one early introduction (Fig. 2a).

In all three countries, repeated introductions into administrative 
regions seems to have been a large factor in the longevity of the EVD 
epidemic (Extended Data Fig. 7). As such, regional case numbers 
were generally the result of multiple overlapping introduction events  
followed by within-region spread and occasional onward transmis-
sion to other regions. This suggests a metapopulation model in which 
the persistence of the epidemic was driven by introduction into novel 
contact networks rather than by mass-action transmission, such as  
susceptible-infectious-removed dynamics31,32. We found that, on  
average, EBOV migrates between administrative regions at a rate of 

Table 2 | Summary of generalized linear model results with case 
counts as the response variable
Predictor* Description Coefficient† 95% CI‡ Inclusion§ BF||

TempSS Temperature 
seasonality

−1.1 −1.6, −0.5 0.83 >50

TT50K Time to travel to a 
population centre of 

50,000 people

−0.9 −1.4, −0.4 0.62 32.4

PopSize Population size 0.9 0.3, 1.6 0.60 29.6
Precip Precipitation 0.8 0.2, 1.3 0.18 4.4
TT100K Time to travel to a 

population centre of 0.1 
million people

−0.8 −1.7, −0.1 0.16 3.8

*Predictors included in the model with Bayes factor >3. 
†Mean coefficient. 
‡95% highest posterior density credible interval (CI). 
§Probability that the predictor was included in the model. 
||BF, Bayes factor.
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Figure 3 | The metapopulation structure of the 
epidemic. a, Kernel density estimate of distances 
associated with inferred EBOV dispersal events: 
50% occur over distances <72 km and <5% 
occur over distances >232 km. b, Kernel density 
estimate of the number of independent EBOV 
introductions into each administrative region: 
50% have fewer than 4.8 and <5% greater than 
21.3. c, Kernel density estimate of the mean 
size of sampled cases resulting from each 
introduction with at least 2 sampled cases: 50% 
<5.3 cases, 95% <32 cases. d, Kernel density 
estimate of the persistence of clusters in days 
(from time of introduction to time of the last 
sampled case): 50% <36 days, 95% <181 days. 
a–d, 50% and 95% are indicated by the dashed 
lines.
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0.85 events per lineage per year (95% CI, 0.72–0.97). Assuming a serial 
interval of 15.3 days33, this rate translates to a 3.6% chance (95% CI, 
3.0–4.1%) that over the course of a single infection, the transmission 
chain moved between regions. Given the key role that virus dispersal 
played in sustaining the epidemic, the detection and isolation of these 
relatively low proportions of mobile cases may have a disproportionate 
effect on the control of an EVD epidemic.

From our spatial phylogenetic model we conclude that many regions 
experienced numerous independent EBOV introductions (Fig. 3b). 
However, these introductions gave rise to clusters of cases that were 
generally small (a mean cluster size of 4.3 and only 5% larger than 17 in 
our sample; Fig. 3c) and of limited duration (a mean persistence time of 
41.3 days with only 5% greater than 181 days; Fig. 3d). Here, we define 
a cluster as a group of sequenced cases in a region that derive from a 
single introduction event and define persistence as the time between 
the introduction event and the last sampled case in the cluster. These 
definitions are conservative regarding sampling intensity, as we expect 
additional samples would have split clusters apart rather than join them. 
Furthermore, introductions that were not detected will be dispropor-
tionately smaller, and so the cluster size estimate will be biased upwards. 
Segregating these observations by country (Extended Data Fig. 8 (left)) 
shows that districts of Sierra Leone had more introductions and that 
Guinea generally had smaller clusters, but that persistence was similar 
between the three countries. A comparison between introductions that 
occurred before October 2014 and those that occurred after this date 
shows that the number of introductions per location was comparable, 
whereas those that occurred early generally resulted in larger and more 
persistent clusters (Extended Data Fig. 8 (right)).

Therefore, with 5.8% sampling, we arrive at a conservative estimate 
of approximately 75 regional cases per introduction event. Although 
larger population centres, in particular capital cities, generally expe-
rienced more introductions (Extended Data Fig. 9a), the cluster sizes 
are less strongly associated with population size (Extended Data  
Fig. 9b), further highlighting the role of virus movement into urban 
areas as major factor for the high caseloads in large population centres. 
Frequent cluster extinction, despite a small fraction of individuals being 
infected, suggests that individual outbreaks were constrained by the 
degree of connectedness among contact networks. Thus, it appears that 
the West African EVD epidemic was sustained by frequent introduc-
tions that resulted in numerous small local clusters of cases, some of 
which went on to further seed clusters in other locations.

Viral genomics as a tool for outbreak response
The 2013–2016 EVD epidemic in West Africa has unfortunately 
become a costly lesson in addressing an infectious disease outbreak 
in the absence of preparedness of both the exposed population and 
the international community. Our work demonstrates the value of 
pathogen genome sequencing in a public healthcare emergency and 

the value of timely pre-publication data sharing to identify the origins 
of imported disease case clusters, to track pathogen transmission as 
the epidemic progresses, and to follow up on individual cases as the 
epidemic subsides.

It is inevitable that as sequencing costs decrease, accuracy increases 
and sequencing instruments become more portable, real-time viral 
surveillance and molecular epidemiology will be routinely deployed 
on the front lines of infectious disease outbreaks10,14,16,34–36. Although 
we have shown here that the broad pattern of EBOV spatial movement 
was discernible from virus genomes derived from samples collected up 
until October 2014 only, there was a notable hiatus in sequencing at 
this time35 and the genomes in the present dataset from that time were 
sequenced retrospectively from archived material. The West African 
EVD epidemic has demonstrated that a steady sequencing pace34–36, 
local sequencing capacity10,14,16 and rapid dissemination of data7 are 
key requirements in generating actionable sequence data from an 
infectious disease outbreak. However, as viral genome sequencing is 
scaled up and approaches the timescale of viral evolution, the analysis 
techniques will increasingly represent the bottleneck for timely com-
munication of information for an outbreak response.

The analysis of the comprehensive EBOV genome set that was col-
lected during the 2013–2016 EVD epidemic, including the findings pre-
sented here and in other studies7,9,13–17,37,38, provides a framework for 
predicting the behaviour of future disease outbreaks caused by EBOV, 
other filoviruses and perhaps other human pathogens. However, many 
questions remain about the biology of EBOV. As sustained human-to-
human transmission waned, West Africa experienced several instances 
of recrudescent transmission, often in regions that had not seen cases 
for many months as a result of persistent sub-clinical infections11,12,39. 
Although, in hindsight, such sequelae were not entirely unexpected40, 
the magnitude of the 2013–2016 epidemic has put the region at ongo-
ing risk of sporadic EVD re-emergence. Similarly, the nature of the 
reservoir of EBOV, and its geographic distribution, remain as funda-
mental gaps in our knowledge. Resolving these questions is critical to 
predicting the risk of zoonotic transmission and therefore of future 
EVD outbreaks.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
Sequence data. We compiled a dataset of 1,610 publicly available full EBOV 
genomes sampled between 17 March 2014 and 24 October 2015 (see https://github/
ebov/space-time/data/ for the full list and metadata). The number of sequences 
and the proportion of cases sequenced varies between countries; our dataset con-
tains 209 sequences from Liberia (3.8% of known and suspected cases), 982 from 
Sierra Leone (8.0%) and 368 from Guinea (9.2%) (Supplementary Table 1). Most 
(n = 1,100) genomes are of high quality, with ambiguous sites and gaps comprising 
less than 1% of the total alignment length, followed by sequences with between 1% 
and 2% of sites that comprised ambiguous bases or gaps (n = 266), 98 sequences 
with 2–5%, 120 sequences with 5–10% and 26 sequences with more than 10% 
of sites that are ambiguous or are gaps. Sequences known to be associated with  
sexual transmission or latent infections were excluded, as these viruses often exhibit 
anomalous molecular clock signals11,12. Sequences were aligned using MAFFT41 
and edited manually. The alignment was partitioned into coding regions and 
non-coding intergenic regions with a final alignment length of 18,992 nucleotides 
(available from https://github/ebov/space-time/data/).
Masking putative ADAR-edited sites. As noticed in previous studies15,38, some 
EBOV isolates contain clusters of T-to-C mutations within relatively short stretches 
of the genome. Interferon-inducible adenosine deaminases acting on RNA (ADAR) 
are known to induce adenosine to inosine hypermutations in double-stranded 
RNA43. ADARs have been suggested to act on RNAs from numerous groups of 
viruses42. When negative-sense single-stranded RNA virus genomes are edited 
by ADARs, A-to-G hypermutations seem to preferentially occur on the negative 
strand, which results in U/T-to-C mutations on the positive strand44–46. Multiple 
T-to-C mutations are introduced simultaneously by ADAR-mediated RNA editing 
which would interfere with molecular clock estimates and, by extension, the tree 
topology. We therefore designated that four or more T-to-C mutations within 300 
nucleotides of each other as a putative hypermutation tract, whenever there is 
evidence that all T-to-C mutations within such stretches were introduced at the 
same time, that is, every T-to-C mutation in a stretch occurred on a single branch. 
We detected a total of 15 hypermutation patterns with up to 13 T-to-C mutations 
within 35 to 145 nucleotides. Of these patterns, 11 are unique to a single genome 
and 4 are shared across multiple isolates, suggesting that occasionally viruses that 
survive hypermutation are transmitted47. Putative tracts of T-to-C hypermutation 
almost exclusively occur within non-coding intergenic regions, where their effects 
on viral fitness are presumably minimal. In each case, we mask out these sites as 
ambiguous nucleotides, but leave the first T-to-C mutation unmasked to provide 
phylogenetic information on the relatedness of these sequences.
Phylogenetic inference. Molecular evolution was modelled according to a 
HKY+Γ4 substitution model (refs 48, 49) independently across four partitions 
(codon positions 1, 2, 3 and non-coding intergenic regions). Site-specific rates 
were scaled by relative rates in the four partitions. Evolutionary rates were allowed 
to vary across the tree according to a relaxed molecular clock that draws branch- 
specific rates from a log-normal distribution50. A non-parametric coalescent 
‘Skygrid’ model was used to act as a prior density on trees51. The overall evolu-
tionary rate was given an uninformative continuous-time Markov chain (CTMC) 
reference prior52, while the rate multipliers for each partition were given an unin-
formative uniform prior over their bounds. All other priors used to infer the phy-
logenetic tree were left at their default values. BEAST XML files are available from 
https://github/ebov/space-time/data/. We ran an additional analysis with a subset 
of data (787 sequences collected up to November 2014—the peak of case numbers 
in Sierra Leone) to test the robustness of inference if they had been performed 
mid-epidemic.
Geographic history reconstruction. The level of administrative regions within 
each country was chosen so that population sizes between regions are compa-
rable. For each country the appropriate administrative regions were: prefecture 
for Guinea (administrative subdivision level 2), county for Liberia (level 1) and 
district for Sierra Leone (level 2). We refer to them as regions (63 in total, but 
only 56 are recorded to have had EVD cases) and each sequence, where available, 
was assigned the region where the patient was recorded to have been infected as 
a discrete trait. When the region within a country was unknown (n = 223), we 
inferred the sequence location as a latent variable with equal prior probability over 
all available regions within that country. Most of the sequences with unknown 
regional origins were from Sierra Leone (n = 151), followed by Liberia (n = 69) and 
Guinea (n = 3). In the absence of any geographic information (n = 2) we inferred 
both the country and the region of a sequence.

We used an asymmetric CTMC53,55 matrix to infer instantaneous transitions 
between regions. For 56 regions with recorded EVD cases, a total of 3,080 inde-
pendent transition rates would be challenging to infer from one realization of the 
process, even when reduced to a sparse migration matrix using stochastic search 
variable selection53.

Therefore, to infer the spatial phylogenetic diffusion history between the K = 56 
locations, we adopt a sparse GLM formulation of CTMC diffusion18. This model 
parameterizes the instantaneous movement rate Λij from location i to location j as 
a log-linear function of P potential predictors Xij = (xij1, …, xijP)′ with unknown 
coefficients β  = (β1, …, βP)′ and diagonal matrix δ with entries (δ1, …, δp). These 
latter unknown indicators δp ∈ {0,1} determine the inclusion in or exclusion from 
the model of a single predictor. We generalize this formulation here to include 
two-way random effects that allow for location origin- and destination-specific 
variability. Our two-way random effects GLM becomes

′ δβΛ ε ε= + +Xlog( ) (1)ij ij i j

where εk is distributed as normal(0, σ2) for k = 1, ..., K, and σ2 is distributed as 
inverse-Γ(0.001, 0.001), and where ε = (ε1, …, εK) are the location-specific effects. 
These random effects account for unexplained variability in the diffusion process 
that may otherwise lead to spurious inclusion of predictors.

We follow ref. 18 by specifying that a priori all βp are independent and normally 
distributed with mean 0 and a relatively large variance of 4 and by assigning inde-
pendent Bernoulli prior probability distributions on δp.

Let q be the inclusion probability and w be the probability of no predictors being 
included. Then, using the distribution function of a binomial random variable 
q = 1 − w1/P, where P is the number of predictors, as before. We use a small success 
probability on each predictor’s inclusion that reflects a 50% prior probability (w) 
on no predictors being included.

In our main analysis, we consider 25 individual predictors that can be classi-
fied as geographic, administrative, demographic, cultural and climatic covariates 
of spatial spread (Extended Data Table 1). Where measures are region-specific 
(rather than pairwise region measures), we specify both an origin and destina-
tion predictor. We also tested for sampling bias by including an additional origin 
and destination predictor based on the residuals for the regression of sample size 
against case count (Extended Data Fig. 1b), but these predictors did not receive 
any support (data not shown).

To draw posterior inference, we follow ref. 18 by integrating β and δ, and further 
employ a random-walk Metropolis transition kernel on ε and sample σ2 directly 
from its full conditional distribution using Gibbs sampling.

To obtain a joint posterior estimate from this joint genetic and phylogeographic 
model, an MCMC chain was run in BEAST 1.8.4 (ref. 54) for 100 million states, 
sampling every 10,000 states. The first 1,000 samples in each chain were removed 
as burnin, and the remaining 9,000 samples used to estimate a maximum clade 
credibility tree and to estimate posterior densities for individual parameters.  
A second independent run of 100 million states was performed to check conver-
gence of the first.

To consider the feasibility of ‘real-time’ inference from virus genome data from 
the height of the EVD epidemic we took only those sequences derived from sam-
ples taken up until the end of October 2014 (n = 787). We undertook the same joint 
phylogenetic and spatial GLM analysis as for the full dataset including the same set 
of 25 predictors. We ran this analysis for 200 million states, sampling every 20,000 
states and removing the first 10% of samples.

To obtain realizations of the phylogenetic CTMC process, including both tran-
sitions (Markov jumps) between states and waiting times (Markov rewards) within 
states, we used posterior inference of the complete Markov jump history through 
time18,56. In addition to transitions ‘within’ the phylogeny, we also estimate the 
expected number of transitions ‘from’ origin location i in the phylogeographic tree 
to arbitrary ‘destination’ location j as follows:

ζ τ μΛ π= /c (2)ij i ij i

where τi is the waiting time (or Markov reward) in ‘origin’ state i throughout the 
phylogeny, μ is the overall rate scalar of the location transition process, πi is the 
equilibrium frequency of ‘origin’ state i, and c is the normalizing constant applied 
to the CTMC rate matrices in BEAST. To obtain the expected number of transitions 
to a particular destination location from any phylogeographic location (integrat-
ing over all possible locations across the phylogeny), we sum over all 56 origin 
locations included in the analysis. We note that the destination location can also 
be a location that was not included in the analysis because we only need to con-
sider destination j in the instantaneous movement rates Λij; since the log of these 
rates are parameterized as a log-linear function of the predictors, we can obtain 
these rates through the coefficient estimates from the analysis and the predictors 
extended to include these additional locations. Specifically, we use this to predict 
introductions in regions in Guinea, for which no cases were reported (n = 7) and 
for regions in neighbouring countries along the borders with Guinea or Liberia 
that remained disease free (n = 18). To obtain such estimates under different pre-
dictors or predictor combinations, we perform a specific analysis under the GLM 
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model including only the relevant predictors or predictor combinations without 
the two-way random effects. For computational expedience, we performed these 
analyses, as well as the time-inhomogeneous analyses below, by conditioning on 
a set of 1,000 trees from the posterior distribution of the main phylogenetic anal-
ysis18. We summarize mean posterior estimates for the transition expectations 
based on the samples obtained by our MCMC analysis; we also note that the value 
of c is sample-specific.
Time-dependent spatial diffusion. To consider time-inhomogeneity in the spatial 
diffusion process, we start by borrowing epoch modelling concepts from ref. 57. 
The epoch GLM parameterizes the instantaneous movement rate Λijt from state 
i to state j within epoch t as a log-linear function of P epoch-specific predictors 
Xijt = (xijt1, …, xijtP)′ with constant-through-time, unknown coefficients β. We gen-
eralize this model to incorporate a time-varying contribution of the predictors 
through time-varying coefficients β(t) using a series of change-point processes. 
Specifically, the time-varying epoch GLM models

Λ β

β φ β φ β

= ′

= − +

X
I

t
t t t

log ( )
( ) ( ( )) ( ( ))

(3)ijt ijt

B A

where βB = (βB1, …, βBP)′ are the unknown coefficients before the change-points, 
βA = (βA1, …, βAP)′ are the unknown coefficients after the change-points, diagonal 
matrix ϕ(t) has entries ...> >t t(1 ( ), , 1 ( ))t t t tP1 , ⋅ t1 ( )( )  is the indicator function and 
T = (t1, …, tP) are the unknown change-point times. In this general form, the 
contribution of predictor p before its change-point time tp is βBp and its contribu-
tion after is βAp for P = 1, …, P. Fixing tp to be less than the time of the first epoch 
or greater than the time of the last epoch results in a time-invariant coefficient for 
that predictor.

Similar to the constant-through-time GLM, we specify a priori that all βBp and 
βAp are independent and normally distributed with mean 0 and a relatively large 
variance of 4. Under the prior, each tp is equally probable to lie before any epoch.

We used random-walk Metropolis transition kernels on βB, βA and T.
In a first epoch GLM analysis, we keep the five predictors that are convincingly 

supported by the time-homogeneous analysis included in the model and estimate  
an independent change-point tp for their associated effect sizes: distance,  
nat./int. effect, shared international border and origin and destination population 
size change-points. To quantify the evidence in favour of each change-point, we 
calculate Bayes factor support on the basis of the prior and posterior odds that tp 
is less than the time of the first epoch or greater than the time of the last epoch. 
Because we find only very strong support for a change-point in the nat./int. effect, 
we subsequently estimate the effect sizes before and after its associated change-
point, keeping the remaining four predictors homogeneous through time.
Within-location generalized linear models. EVD case numbers are reported by 
the WHO for every country division (region) at the appropriate administrative 
level, split by epidemiological week. For every region and for each epidemiological 
week four numbers are reported: new cases in the patient and situation report 
databases as well as whether the new cases are confirmed or probable. At the height 
of the epidemic many cases went unconfirmed, even though they were likely to 
have been genuine EVD. As such, we treat probable EVD cases in WHO reports 
as confirmed and combine them with laboratory-confirmed EVD case numbers. 
Following this we take the higher combined case number of situation report and 
patient databases. The latest situation report in our data goes up to the epidemio-
logical week spanning 8 to 14 February 2016, with all case numbers being down-
loaded on 22 February 2016. There are apparent discrepancies between cumulative 
case numbers reported for each country over the entire epidemic and case numbers 
reported per administrative division over time, such that our estimate for the final 
size of the epidemic, based on case numbers over time reported by the WHO, is 
on the order of 22,000 confirmed and suspected cases of EVD compared to the 
official estimate of around 28,000 cases across the entire epidemic. This likely arose 
because case numbers are easier to track at the country level, but become more 
difficult to narrow down to administrative subdivision level, especially over time 
(only 86% of the genome sequences had a known location of infection).

We studied the association between disease case counts using generalized linear 
models in a very similar fashion to the framework presented above. A list of the 
location-level predictors we used for these analyses can be found in Extended Data 
Table 1. We also employed stochastic search variable selection as described above, 
in order to compute Bayes factors (BFs) for each predictor. In keeping with the 

genetic GLM analyses, we also set the prior inclusion probabilities such that there 
was a 50% probability of no predictors being included.

λ
λ α β δ β δ

∼ −

=
+
= + + ... +

Y p r

p r
r
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log( )

i i

i
i

i i P P iP1 1 1

where r is the over-dispersion parameter, δi are the indicators as before. Prior 
distributions on model parameters for these analyses were the same as those used 
for the genetic analyses whenever possible. We then use this model to predict how 
many cases the locations which reported zero EVD cases would have gathered, that 
is, the potential size of the epidemic in each location.
Computational details. To fit the models described above we took advantage of the 
routines already built in BEAST (https://github.com/beast-dev/beast-mcmc) but in 
a non-phylogenetic setting. Once again, posterior distributions for the parameters 
were explored using MCMC. We ran each chain for 50 million iterations and dis-
carded at least 10% of the samples as burn-in. Convergence was checked by visual 
inspection of the chains and checking that all parameters had effective sample sizes 
greater than 200. We ran multiple chains to ensure that results were consistent. 
To make predictions, we used 50,000 Monte Carlo samples from the posterior 
distribution of coefficients and the overdispersion parameter (r) to simulate case 
counts for all locations with zero recorded EVD cases.
Data availability. All collated data, genetic sequence alignments, phylogenetic 
trees, analysis scripts and analysis output are available at https://github.com/
ebov/space-time and http://dx.doi.org/10.7488/ds/1711. Individual virus genetic 
sequences are published in earlier works and are available from NCBI GenBank 
(see https://github.com/ebov/space-time for a list of accession numbers and  
references).
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a)

b)

Extended Data Figure 1 | Distribution and correlation of EVD cases and 
EBOV sequences. a, Administrative regions within Guinea (green), Sierra 
Leone (blue) and Liberia (red); shading is proportional to the cumulative 
number of known and suspected EVD cases in each region. Darkest 
shades represent 784 cases for Guinea (Macenta prefecture); 3,219 cases 
for Sierra Leone (Western Area urban district); and 2,925 cases for Liberia 
(Montserrado county); hatching indicate regions without reported EVD 
cases. Circle diameters are proportional to the number of EBOV genomes 

available from that region over the entire EVD epidemic with the largest 
circle representing 152 sequences. Crosses mark regions for which no 
sequences are available. Circles and crosses are positioned at population 
centroids within each region. b, A plot of number of EBOV genomes 
sampled against the known and suspected cumulative EVD case numbers. 
Regions in Guinea are denoted in green, Sierra Leone in blue and Liberia 
in red. Spearman correlation coefficient: 0.93.
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Conakry

Freetown

Monrovia

Extended Data Figure 2 | Dispersal of virus lineages over time. 
Virus dispersal between administrative regions estimated using the GLM 
phylogeography model (see Methods). The arcs are between population 
centroids of each region, show directionality from the thin end to the thick 

end and are coloured in a scale denoting time from December 2013 in 
blue to October 2015 in yellow. Countries are coloured with Liberia in red, 
Guinea in green and Sierra Leone in blue.
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Extended Data Figure 3 | Inference of GLM predictors in a ‘real-time’ 
context. For the dataset constructed from EBOV genome sequences 
derived from samples taken up until October 2014 (blue), the same 

5 spatial EBOV movement predictors were given categorical support 
(inclusion probabilities = 1.0) as for the full dataset (red). Likewise, the 
coefficients for these predictors are consistent in their sign and magnitude.
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Extended Data Figure 4 | The effect of borders on EBOV migration 
rates between regions. Posterior densities for the migration rates between 
locations that share a geographical border and those that do not share 
borders for international migrations and national migrations. Where 
two regions share a border (right y axis), national migrations are only 

marginally more frequent than international migrations showing that 
both types of borders are porous to short local movement. Where the two 
regions are not adjacent (left y axis), international migrations are much 
rarer than national migrations.
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Extended Data Figure 5 | Summarized international migration history 
of the epidemic. a, b, All viral movement events between countries 
(Guinea, green; Sierra Leone, blue; Liberia, red) are shown split by 
whether they are between regions that are geographically distant (a) or 

regions that share the international border (b). Curved lines indicate 
median (intermediate colour intensity), and 95% highest posterior density 
intervals (lightest and darkest colour intensities) for the number of 
migrations that are inferred to have taken place between countries.
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a)

b)

Extended Data Figure 6 | Comparison of predicted and observed 
numbers of introductions and case numbers. a, b, Left, scatter plots show 
inferred introduction numbers (a) or observed case numbers (b), coloured 
by region as in Extended Data Fig. 1. Administrative regions that did 
not report any cases are indicated with empty circles on the scatter plot. 

Right, administrative regions on the map are coloured by the residuals (as 
observed/predicted) of the scatter plot. Regions are coloured grey where 
0.5 < observed/predicted < 2.0 and transition into red or blue colours for 
overestimation or underestimation, respectively.
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Extended Data Figure 7 | Region-specific introductions, cluster sizes 
and persistence. Each row summarizes independent introductions and 
the sizes (as numbers of sequences) of resulting outbreak clusters. Clusters 
are coloured by their inferred region of origin (colours are the same as 
in Extended Data Fig. 1). The horizontal lines represent the persistence 
of each cluster from the time of introduction to the last sampled case 
(individual tips have persistence 0). The areas of the circles in the middle 

of the lines are proportional to the number of sequenced cases in the 
cluster. The areas of the circles next to the labels on the left represent the 
population sizes of each administrative region. Vertical lines within each 
cell indicate the dates of declared border closures by each of the three 
countries: 11 June 2014 in Sierra Leone (blue), 27 July 2014 in Liberia (red) 
and 09 August 2014 in Guinea (green).
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Extended Data Figure 8 | Kernel density estimates for inferred 
epidemiological statistics. From top to bottom, distance travelled 
(distance between population centroids, in kilometres); number of 
introductions that each location experienced; cluster size (number of 
sequences collected in a location as a result of a single introduction); 
cluster persistence (days from the common ancestor of a cluster to its 
last descendent, single tips have persistence of 0. Left, analysis for Sierra 
Leone (blue), Liberia (red) and Guinea (green). Right, analysis for before 
October 2014 (grey) and after October 2014 (orange). Points with vertical 
lines connected to the x axis indicate the 50% and 95% quantiles of the 
parameter density estimates. Within Sierra Leone, Liberia and Guinea, 

50% of all migrations occurred over distances of around 100 km and 
persisted for around 25 days. Exceptions were for Sierra Leone, which 
experienced more introductions per location (around 12) than Guinea 
and Liberia (around 4); and Guinea, where migrations tended to occur 
over larger distances owing to the size of the country and whose cluster 
sizes following introductions tended to be lower (3 sequences versus 
Liberia and Sierra Leone, which had 5 sequences each). Between the first 
(grey) and second (orange) years of the epidemic there were considerable 
reductions in cluster persistence, cluster sizes and distances travelled by 
viruses, whereas dispersal intensity remained largely the same.
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Extended Data Figure 9 | Relationship between cluster size, 
introductions or persistence and population size. a, The mean number 
of introductions into each location against (log) population sizes. 
The Western Area (in Sierra Leone) received the most introductions, 
whereas Conakry and Montserrado were closer to the average. The 
association between population size and the number of introductions 
was not very strong (R2 = 0.28, Pearson correlation = 0.54, Spearman 

correlation = 0.57). b, The mean cluster size for each location plotted 
against (log) population sizes. The association is weaker than for a 
(R2 = 0.11, Pearson correlation = 0.35, Spearman correlation = 0.57). 
c, The mean persistence times (per cluster, in days) against population 
sizes. A similarly weak association is observed as in b (R2 = 0.12, Pearson 
correlation = 0.37, Spearman correlation = 0.36). All computations were 
based on a sample of 10,000 trees from the posterior distribution.
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Extended Data Table 1 | Predictors included in the time-homogenous GLM

Predictor type Abbreviation Predictor description

Geographic Distances Great circle distances between the locations' population centroids, log-transformed, 
standardized 

Administrative Nat/Int Two locations are in the same country verses in different countries 

Administrative Nat/Int The relative preference of transitioning between locations in the same country over 
transitioning between locations in two different countries 

Administrative IntBoSh The relative preference of transitioning between location pairs that are in different 
countries and share a border 

Administrative NatBoSh The relative preference of transitioning between location pairs that are in the same 
country and share a border 

Administrative LibGinAsym Between Liberia-Guinea asymmetry 

Administrative LibSLeAsym Between Liberia-Sierra Leone asymmetry 

Administrative GinSLeAsym Between Guinea-Sierra Leone asymmetry 

Demographic OrPop Origin population size, log-transformed, standardized 

Demographic DestPop Destination population size, log-transformed, standardized 

Demographic OrPopDens Origin population density, log-transformed, standardized 

Demographic DestPopDens Destination population density, log-transformed, standardized 

Demographic OrTT100k Estimated mean travel time in minutes to reach the nearest major settlement of at least 
100,000 people at origin, log-transformed, standardized 

Demographic DestTT100k estimated mean travel time in minutes to reach the nearest major settlement of at least 
100,000 people at destination, log-transformed, standardized 

Demographic OrGrEcon Origin Gridded economic output, log-transformed, standardized 

Demographic DestGrEcon Destination Gridded economic output, log-transformed, standardized 

Cultural IntLangShared The relative preference of transitioning between location pairs that are in different 
countries and share at least one of 17 vernacular languages 

Cultural NatLangShared The relative preference of transitioning between location pairs that are in the same 
country and share at least one of 17 vernacular languages

Climatic OrTemp Temperature annual mean at origin, log-transformed, standardized 

Climatic DestTemp Temperature annual mean at destination, log-transformed, standardized 

Climatic OrTempSS Index of temperature seasonality at origin, log-transformed, standardized 

Climatic DestTempSS Index of temperature seasonality at destination, log-transformed, standardized 

Climatic OrPrecip Precipitation annual mean at origin, log-transformed, standardized 

Climatic DestPrecip Precipitation annual mean at destination, log-transformed, standardized 

Climatic OrPrecipSS Index of precipitation seasonality at origin, log-transformed, standardized 

Climatic DestPrecipSS Index of precipitation seasonality at destination, log-transformed, standardized 
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