rs79.vrx.palo-alto.ca.us

Measles virus for cancer therapy

Measles virus offers an ideal platform from which to build a new generation of safe, effective oncolytic viruses. Occasional "spontaneous" tumor regressions have occurred during natural measles infections, but common tumors do not express SLAM, the wild-type MV receptor, and are therefore not susceptible to the virus. Serendipitously, attenuated vaccine strains of measles virus have adapted to use CD46, a regulator of complement activation that is expressed in higher abundance on human tumor cells than on their non transformed counterparts. For this reason, attenuated measles viruses are potent and selective oncolytic agents showing impressive antitumor activity in mouse xenograft models. The viruses can be engineered to enhance their tumor specificity, increase their antitumor potency and facilitate noninvasive in vivo monitoring of their spread. A major impediment to the successful deployment of oncolytic measles viruses as anticancer agents is the high prevalence of pre-existing anti measles immunity, which impedes bloodstream delivery and curtails intratumoral virus spread. It is hoped that these problems can be addressed by delivering the virus inside measles-infected cell carriers and/or by concomitant administration of immunosuppressive drugs. From a safety perspective, population immunity provides an excellent defense against measles spread from patient to carers and, in fifty years of human experience, reversion of attenuated measles to a wild type pathogenic phenotype has not been observed. Clinical trials testing oncolytic measles viruses as an experimental cancer therapy are currently underway.


Measles virus used to put woman's cancer into remission

A woman with an incurable cancer is now in remission, thanks, doctors say, to a highly concentrated dose of the measles virus. For 10 years, Stacy Erholtz, 49, battled multiple myeloma, a deadly cancer of the blood. Doctors at the Mayo Clinic say she had received every type of chemotherapy drug available for her cancer and had undergone two stem cell transplants, only to relapse time and again.


Measles to the Rescue: A Review of Oncolytic Measles Virus

Oncolytic virotherapeutic agents are likely to become serious contenders in cancer treatment. The vaccine strain of measles virus is an agent with an impressive range of oncolytic activity in pre-clinical trials with increasing evidence of safety and efficacy in early clinical trials. This paramyxovirus vaccine has a proven safety record and is amenable to careful genetic modification in the laboratory. Overexpression of the measles virus (MV) receptor CD46 in many tumour cells may direct the virus to preferentially enter transformed cells and there is increasing awareness of the importance of nectin-4 and signaling lymphocytic activation molecule (SLAM) in oncolysis. Successful attempts to retarget MV by inserting genes for tumour-specific ligands to antigens such as carcinoembryonic antigen (CEA), CD20, CD38, and by engineering the virus to express synthetic microRNA targeting sequences, and “blinding” the virus to the natural viral receptors are exciting measures to increase viral specificity and enhance the oncolytic effect. Sodium iodine symporter (NIS) can also be expressed by MV, which enables in vivo tracking of MV infection. Radiovirotherapy using MV-NIS, chemo-virotherapy to convert prodrugs to their toxic metabolites, and immune-virotherapy including incorporating antibodies against immune checkpoint inhibitors can also increase the oncolytic potential. Anti-viral host immune responses are a recognized barrier to the success of MV, and approaches such as transporting MV to the tumour sites by carrier cells, are showing promise. MV Clinical trials are producing encouraging preliminary results in ovarian cancer, myeloma and cutaneous non-Hodgkin lymphoma, and the outcome of currently open trials in glioblastoma multiforme, mesothelioma and squamous cell carcinoma are eagerly anticipated.